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Abstract—The accurate detection of people in indoor envi-
ronments requires high-cost devices, while low-cost devices, in
addition to low accuracy, offer little information about the
monitored events. The perturbations that result from indoor
movements affect the signals received by 802.11 interfaces. Hence,
an 802.11 device becomes a widely available, low-cost, and
reasonably accurate solution for several applications. This paper
presents WiDMove, a proposed technique to detect the entry and
exit of persons, within an indoor environment, using the channel
state information (CSI) measurements, which is provided by the
IEEE 802.11n compliant devices. Based on the gathered CSI
measurements, we utilized frequency-time analysis methodology
to build an efficient features vector based on Short-Time Fourier
Transform (STFT) and Principal Component Analysis (PCA).
We used the extracted features to train and develop a Support
Vector Machine (SVM) classifier, which provided very promising
initial results. Our initial results have an accuracy near 80%.

I. INTRODUCTION AND RELATED WORK

The IEEE 802.11n standard has defined a mechanism,
known as Channel State Information (CSI), which can monitor
the channel of 802.11 interfaces. This mechanism can estimate
the changes in the signal when it travels from the transmitter
to the receiver. With this mechanism, we can measure the
perturbation caused by human activities using off-the-shelf
802.11 interfaces, which are widely deployed.

There are prior proposals to use CSI to detect human
activities such as the work presented in [1] and [2]. Authors
in [1] utilized CSI measurements to recognize human subjects
or various classes of activities using a Naive Bayes classifier.
In [2], authors presented quantitative models to be used
as matching profiles to correlate CSI measurement with a
specific set of activities (e.g., running, walking, falling,and
setting-down). The authors used wavelets analysis to extract
movement-related features and Hidden Markov Model (HMM)
for the classification stage.

The contributions of this paper can be summarized as
follows. We propose WiDMove, a new system prototype to
use off-the-shelf 802.11n interfaces as sensors to detect specif-
ically the human movement direction based on CSI measure-
ments. WiDMove uses, among other techniques, Short-Time
Fourier Transform (STFT) to extract movement corresponding
features and support vector machine (SVM) classifier for the
classification stage. In addition, we developed and tested the
prototype in lab environment using real samples dataset, which

we created by collecting samples from eight different persons.
The dataset used in developing this system will be made
available for reuse by research community upon request.

II. BACKGROUND

Channel state information (CSI) is a channel monitoring
mechanism implemented in the IEEE 802.11n compliant in-
terfaces, which can describe the changes in the amplitude and
phase occurred in a transmitted signal during the transmission
process [3]. This mechanism was proposed with the desire
to support the 802.11 devices in the environment adaption
process. However, the information offered by this mechanism
started to be used for various proposes since it correlates with
reasonably promising accuracy with the physical activities
happening at the surrounding environment.

When a room remains without changes, i.e, don’t have
movement within, the changes to the CSI measurements are
negligible. However, when some movement activities occur
in same room, the changes to the CSI measurement are
observable and quantifiable, due to the multipath effect on
the received signals.

IEEE 802.11n devices use OFDM modulation [4], therefore
the CSI metrics include the description of changes in each
channel sub-carrier. A block of CSI measurement has the
dimensions of NTx×NRx×NSub, where NTx and NRx are the
number of transmitting and receiving antennas in order, and
NSub is the number of sub-carriers reported by the device. The
CSI measurements are updated with every new packet arrives
at the receiver according to certain conditions such as being
transmitted in High-Throughput (HT) mode [3].

In this paper, we use support vector machine (SVM) clas-
sifier. In classification problems, the classifier’s model must
be trained using pre-labeled dataset. To create this model, it
is necessary to represent the data into usually a compressed
format compared to the original acquired measurements to
reduce the system complexity. This is done by extracting a set
of of features, that can describe the most important attributes
of the desired classes, while maximizing separability metrics
between classes. The main signal processing and pattern
recognition techniques, we used in this paper, include principle
component analysis (PCA), Short-Time Fourier Transform
(STFT), and Support Vector Machines (SVMs). For more
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details on their technical details, the readers may review [5],
[6], and [7] respectively.

III. WIDMOVE: SYSTEM OVERVIEW

A. Environment Setup

An electromagnetic signal can be perturbed much more by
objects whose dimensions are larger than the signal wave-
length. The wavelength is defined by λ = c/f , where c
is the light speed and f is the channel frequency in Hertz.
In this setup, we use 5 GHz channels, therefore the signal
can be perturbed much more by objects that has dimensions
larger than 6 cm. Because of this sensitivity, it is important to
take some measures to minimize the impact of environment
noise. We take advantage of the use of directional antennas by
positioning a pair of directional antennas at the entry door’s
extremities. That way, the signal should not get significantly
perturbed unless a person passes through the door resulting
into obstructing the line of sight (LoS) [8].

We built an experimental setup in lab using two computers
equipped with Intel Core i7 processors, 8 GB of RAM, and
Ubuntu 14.04. Both computers are equipped with Atheros
ath9k AR9380 NICs, which implements the 802.11n standard
and therefore has support to CSI. The tools to extract the CSI
measurements was installed in both computers, as specified by
the developers [9].

The interfaces are configured to run an infra-structure
network between the computers using one channel on the
baseband of 5 GHz with a bandwidth of 20 MHz.

B. Data Collection

We performed the tests with 8 persons, 7 males and one
female, with ages between 19 and 27 years. We collected
264 samples for each event type (i.e., entering and existing)
where the peoples were advised to walk normally while the
monitoring setup is running. The data were then formatted,
categorized, and labeled to build the WiDMove dataset, which
is made available for download by the research community
upon request.

As the human body activities can be described at a fre-
quency of up to 300 Hz, we sample the CSI measurements at
a sample rate of 800 pps. We organize the CSI data as a matrix
with dimension (800 × Secs) × NTx × NRx × NSub, which
describes NTx × NRx × NSub CSI streams in time domain.
We only use the amplitude portion of the CSI measurements
because of the lack of accuracy and consistency in the Carrier
Frequency Offset (CFO), which makes the phase data reported
by the available API not reliable [2]

C. Data Processing

We start the filtering process by rearranging the CSI matrix
on a bidimensional matrix that describes the amplitude of CSI
streams over the time. Then, we remove the LoS energy from
each point of CSI streams by subtracting 4 seconds mean
from each CSI stream. This is followed by applying the CSI
denoising technique based on PCA [2]. The technique uses
the correlation of each CSI stream to pick the components

that better describe the human activities. Figure 1 shows four
signals, that represent both entry and exit events before and
after the denoising filter process.

At the end of this step we have a matrix with dimensions
(NTx ∗ NRx ∗ NSub) × (800 ∗ NSecs), which represents the
PCA components amplitude ordered by the highest represen-
tativeness over the time.
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(a) Original signal of entry event.
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(b) Entry event filtered with
PCA.
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(c) Original signal of exit event.
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(d) Exit event filtered with PCA.

Fig. 1: Comparison of signals before and after PCA filtering.

D. Spectrogram creation

In this section, we describe the creation of the spectrogram
that we use to extract the features required for classifying
entry and exiting events. Even after the PCA denoising, the
components still have informations that don’t correspond to the
desired human activity, therefore, we need some techniques to
enhance the creation of this type of spectrogram, such as the
technique proposed in [10], which we use as basis for our
solution.

We start by computing the STFT from the first 20 PCA
components using a window size of 256 samples and 155
overlapped samples. These configurations provide us with a
resolution level of 3.12 Hz and 0.12 seconds in the STFT
window.

For each STFT chunk obtained, we execute 3 steps for
preprocessing: (1) Zero the energy of frequencies above
146 Hz. (2) Zero the energy of each silenced time chunk
that doesn’t reach the minimum energy threshold, which we
obtained through calibration measurements. (3) Normalize the
energy from each non-silenced chunk by dividing by the
chunk total energy and the subtracting the average frequency
energies. After preprocessing, we get the final spectrogram by
overlapping all the preprocessed STFTs chunks, then summing
each corresponding point. The output of the summing step is
then smoothed by using a 2-D Gaussian filter with α = 0.8
and size = 5. Figure 2 shows the final spectrogram examples
for both an entering and an exiting event.
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(a) Spectrogram of an entering
event.
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(b) Spectrogram of an exiting
event

Fig. 2: Spectrograms of entry and exit events.

E. Detecting an active event period

This section describes our technique to detect the period of
an active event based on the spectrogram, which we built as
described earlier in Section III-D. In comparison to previous
techniques that use only the variations in time domain to detect
events, this technique is more resilient to environment changes
because it also takes into account the changes in frequencies,
which allows to filter events according to energy levels in
frequency domain.

Entry and exit events are composed mainly of movements
by the human torso area. That movement normally occurs in
an approximate velocity of 1 m/s. Using the formula f = 2v/λ
described in [10], we can check whether a movement exists
or not, in a 5 GHz channel, in a frequency of 33 Hz. Because
of that, we use the spectrogram frequency range from 20 to
50 Hz to detect the exit and entry events.

The interval definition process starts by scanning all time
intervals in the spectrogram for a minimum duration of 1.2 sec-
onds that have energy in all chunks. Then, we check in each
obtained interval if the sum of the interval energy normalized
by the division of the average energy of all intervals is
superior than a specific threshold, which we obtained through
calibration measurements during the data collection stage to
build our benchmarking dataset. If the interval is in accordance
with these restrictions, we consider it as a single interval of
entry or exit event.

F. Features extraction & classification

The first feature extracted is the event duration in seconds.
Then, we generate three signals that describe the accumulated
energy percentage of the spectrogram in the event interval,
using the 25, 50 and 95%. These signals are generated by
extracting, from each time chunk, the frequencies where
the accumulated energy reaches the desired percentage, as
defined by equation 1, where fp(p, t) represents the frequency
in chunk t, at which the percentage p was reached, fmax

represents the maximum frequency of the spectrogram and
E(t,x) represents the energy of frequency x in chunk t.
After generating these three signals, we re-sample each one

into a signal that has 30 points, using the nearest neighbors
interpolation method. This results into a set of 90 features,
named as the energy percentage features, as illustrated at the
horizontal axis of figure 3.

fp(p, t) = min
∀f∈[1,...fmax]

{
f

∣∣∣∣∣
∑f

a=1E(t,a)∑fmax

x=1 E(t,x)

≥ p

}
(1)

The human torso and legs movements can be described by
the percentile accumulative energy signals from 50 and 95%
respectively [11]. For each value present in this signals, we
compute the movement speed using the formula v = f ∗ λ/2
[10]. For each one of this two signals, we compute seven val-
ues: mean, variance, minimum, maximum, skewness, kurtosis
and entropy. By the end of this step, we get an additional 14
features set, named as the speed features, as shown by figure
3.

The next features set describes the event energy signature,
which is computed by dividing the event interval in 4 chunks
then calculate, for each chunk, the energy average of each
frequency found in the spectrogram (In this case, 33 frequency
windows). This results into a new set of 132 features, which
we call as the energy signature features in figure 3.

Finally, we extract the features in the second PCA compo-
nent that can better describe the human activity [2]. We start by
filtering the component using a Continuous Wavelet Transform
(CWT) applied with Morlet Wavelet and them returning it to
the time domain using the ICWT with parameters to get the
frequency range from 0 to 100 Hz. We divide that signal in
10 chunks and compute 10 values: mean, variance, minimum,
maximum, zero crossing rate, skewness, kurtosis, entropy,
energy mean and the frequency peak obtained by the FFT
transformation. As result, we get the last 100 features of the
event, named as PCA components in figure 3.
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Fig. 3: Subtypes of our features vector (i.e., energy percentiles, speed,
energy signature, pca component) and their corresponding weights as
determined by the ReliefF algorithm

To create the model to identify the movement event direc-
tion, we created a Support Vector Machine (SVMs) classifier
with a kernel whose function is Radial Basis Function (RBF).
We have implemented all signal processing, classifier training,
and testing stages in Matlab R©.
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(a) Average accuracy of classifiers
using K-Fold cross-validation (CI of
95%).
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(b) Average accuracy of classifiers
using Leave-One-Out cross-validation
(CI of 95%)
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(c) Impact of samples used in training
phase (CI of 95%).

Fig. 4: Experiment results.

IV. PERFORMANCE EVALUATION

For validating the SVM classifier, we used Leave-One-Out
and K-Fold cross-validation techniques, with K = 10 for the
latter. The results shows that the WiDMove can hit an accuracy
near 80%, under a Confidence Interval (CI) of 95%, as shown
in figure 4.

A. Impact of features quantity

Since the amount of features and their combination may
have an influence on both performance and accuracy, hence we
use the ReliefF algorithm to rank the features that we extracted
to determine which subset might be more efficient in building
the desired classifier. Figure 3 shows the weights of each
feature used in the WiDMove. After finding the weights of
features, we create classifiers that use higher weight features,
varying the quantity of features up to the total set. We evaluate
these classifiers using cross-validation techniques (e.g., K-Fold
and Leave-One-Out). The results we acquired show that the
use of around 40% of features can result in an accuracy near
75%, as shown in figures 4(a) and 4(b).

B. Impact of samples used in training phase

Finally, using a classifier that consumes the entire 337
features vector, we quantified the impact of the size of training
set. We created a large set of identical classifiers varying the
quantity of samples used in the training phase. We checked
the average accuracy for 50 random executions for each
classifier. As shown by figure 4(c), the classifier that got
trained with 100 samples has an accuracy higher than 70%.
This accuracy was increased by adding more samples to the
training phase, resulting into an accuracy near 80%. Classifiers
were only tested using samples from outside the training

subset. Accuracy has been calculated according to equation
2.

Accuracy =
TruePositive+ TrueNegative

TotalPopulation
(2)

V. CONCLUSION

In this paper, we presented WiDMove, a new technique that
uses the IEEE 802.11n CSI measurements and support vector
machines (SVMs) classifier to detect the walking direction
of humans in an indoor environment. The new technique
achieved an average accuracy near 80% with a features vector
of only 337 features, which is a reasonable solution in terms
of computational complexity, real-time requirements, ease of
use and wide spread of deployment. In addition, we briefly
summarized the description of the WiDMove’s CSI measure-
ments dataset for indoor human walking activities, which we
collected, formatted, and labeled. The WiDMove dataset is
available for research purposes upon request. Currently, we
focus on investigating other time-frequency analysis methods
and off-the-shelf (OTS) devices to address the challenge of
inaccurate and inconsistent CSI phase measurements. Alter-
native machine learning classifiers are also to be investigated
with the goal of increasing the system accuracy.
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